LEGIBILITY NOTICE

A major purpose of the Techm-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
'DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
~report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1



‘-..‘
—

,l‘ ) r.j,’,\ iy
F.? f-.,.md ,. (/’(/L[ {:f-’ /U / //_ .
-UR- -89-1462
. LA-UR- -89-1 MAY 0 g 1989

sy
e .'" " -
-,

Los Alamos National Laboratory is operated by the University of California for the United Stale Department of Encrgy under contract W-7405-ENG-36

LA-1JR--89-1462

DE8Y9 011164

TriTLE. MODELING OF NON-STRUCTURAL CONTRIBUTION TO THE
PATTERN

AUTHOR(S): Robert B. Von Dreele, LANSCE

suBMITTED To: Invited Conference Presentation; ACA Riztveld Workshop,
July 28, 1989, Seattle, Washington

DISCLAIMER

This report was prepared as an account of work spunsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employces, makes any warranty, express of implied, or assumes uny legal liability or responsi-
bility for the uccuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned nights. Refer-
ence herein to any specific commercial product, process, or service by trade name, tradematk,
manufacturer, or otherwise does not necessarily constitute or imply ity endorsement, recom-
mendation, or fuvoring by the United States Government or any agency thercof The views
and opinions of authors expressed herein do not necessarily state ot reflect those of the
United States Government or any agency thereof.

By acceptana: of this article, the publisher recognizes that the U.8. Government retsins a noaexcluatve, rayalty-froe liconse 1o publish or reproduce the
publishod form ot 7> '« -thation, or W allow other W do so, for U.8. Government purposos.

The Lo AY ' L aboratory requesta the publisher identify thin art o an_vork performed under the suapices of the U 8. Degnrtment of Energy,

<( )> (- \\ //\ (v (N l.()§ /\Itllll()h' N';m(,mdl !:.!l)()l.ll()l_\’
AP AV AEN ((’ [ ) Los Alamos, New Mexico 87548

FORMNO K3 R4

1
TR w1l OF VHIS DOCUMENY 18 “N“!ww
" . ARATET


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


MODELING OF NON-STRUCTURAL CONTRIBUTION TO THE PATTERN

Robert B. Von Dreele
Manuel Lujan Jr., Neutron Scattering Center (LANSCE), MS H805
Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

The Rictveld refinement technique requires that sensible models be chosen for both the
Bragg reflection profiles and intensities as well as the background contribution. The reflection
profiles contain an instrumental part and a sample dependent part that is affected by particle size
and strain. The intensities are affected by geometric factors peculiar to the diffraction method and
sample dependent effects such as absorption, extinction and preferred orientation. The various
functions used for these effects in Rictveld refinement will be discussed along with the possible
interpretation of their coefficients.

RIETVELD REFINEMENT

Intensi

Time-of-flight

Figure 1. A portion of & TOEF neatron powder diftraction pattern showing the individual
contributions to the total profile intensity. Nine diffraction peaks and a background cutve are

shown along with their sum as lines and the observed profile as crosses,



About 20 years ago, H.M. Rietveld (1709) recognized that a mathematical expression
could be written to represent the observed intensity at every step in a neutron powder diffraction
pattern.

Ic=Ip+ZYh (1)

This expression has both a contribution from the background (Ip) and each of the Bragg reflections
(Yn) which are in the vicinity of the powder pattern step (Figure 1).

Each of these components to the intensity is represented by a mathematical model which
embodies both the crystalline and noncrystalline features of a p~ wder diffraction experiment. The
adjustable parameters for this model are refined by a least-squares minimization of the weighted
differences between the observed and calculated intensities. This approach to the analysis of
powder patterns has been so successful that it has lead to a renaissance in powder diffraction and
this technique of treating powder diffraction data is now known as "Rietveld refinement." This
article will discuss only the Bragg component of the intensity; the background inodels will be
discussed in another talk in this Workshop.

BRAGG INTENSITY

The contributed intensity, Yn(T). from a Bragg peak to a particular profile intensity will
depend on several factors. Obviously the value of the structure factor and the amount of that
particular phase will determine the contribution. In addition, the peak shape and width in relation
to its position will have an effect. The intensity is also affected by extinction and absorption us
well as some geometric factors. Thus,

Yh(T) = SFR2H(T-Ty)Kn (2)

where § is the scale factor for the particular phase, Fy, is the structure factor for a particular
reflection, HCT-T}) *s the value of the profile peak shape function for that reflection at the
position, T, which displaced from its expected position, Ty, and Ky, is the product of the various

geometric and other correction factors for that reflection, Each of these contributions will be

t9



PROFILE FUNCTIONS FOR CW AND TOF

The contribution a given reflection makes to the total profile intensity depends on the
shape function for that reflection profile, its width coefficients and the displacement of the peak
from the profile position. The locations of the peak are usually given in microseconds of TOF or
in centidegrees 20. Discussion of these values is given first followed by details of some of the
peak shape functions presently in use.

REFLECTION POSITIONS IN POWDFX PATTERNS

For a neutron time-of -flight powder diffractometer the relationship between the d-spacing
for a particular powder line and its TOF is given by the simple quadratic

Th=Cdy+Adp2+2 3)

The three parameters C, A and Z are characteristic of a given counter bank on a TOF powder
diffractometer. C may be calculated with good precision frota the flight paths, diffraction angle,
and counter tube length by use of the de Broglie equation.

C = 252.816*2sin 8(L1+VL22+1.3%/16) (@)

where 8 is the Bragg angle, L) is the primary flight path, L is sample to detector center distance
and L3 is the height of the detector; all distances are in meters. The units of C are then psec/A.
Precise values for constants C, A and Z must be obtained by fitting to a powder diffraction pattern
of a standard matcrial.

The reflection position in a constant wavelength experiment is obtained from Bragg's Law
Th = 100asin(A/2dy) + 7. (%)

where 7 is the zero point error on the counter rm position and the resultis in centidegrees, Both
A and 7 for neutrons or synchrotron x-rays are obtained from refinement of @ standard material.
For conventional sealed tube x ray sources on a commercial instrument, the wavelength is known

to mgh accuracy and careful instrument alignment vields 7 ol z¢ro,



TOF PROFILE FUNCTIONS

The best known profile function for TOF neutron data is the empirical convolution
function of Jorgensen et al. (1978) and Von Dreele, et al. (1982).

H(AT) = NfeY erfc(y) + eV erfc(z)) (6)

where AT is the difference in TOF between the reflection position, Ty, and the profile point, T;
the terms N,u,v,y and z are dependent on the profile coefficients. The function erfc(x) is the
complementary error function. This profile function is the result of convoluting two back-to-back
exponentials with a Gaussian,

H(AT) = [GAT-9P@)dt Y
where

P(1) = 2Ne®* for1 < 0 (8)
and

P(1) =2NePt fort >0 9

for the two exponentials; o and [ are the rise and decay coefficients for the exponentials and are
largely characteristic of the specific moderator viewed by the instrument. The intersection of the
two exponentials at 1=0 then defines the peak location, Ty, which is generally not coincident with
the maximum in H(AT). The Gaussian function is

G(AT-1) = «f‘lEEI - (AT-1)2/202 (10)

where the variance, 02 is largely characteristic of the instrument design (scauering angle and flight
path) and the sample. ‘These functions when convoluted give the profile tunction shown above,
The normalization lactor, N, is

_off
N 2(a+[}) (h



The coefficients u,v,y and z are

u=S{ac? + 24T) (12)
v= %([302-2131‘) (13)
y= (il (14)
z='@522-?0%n (15)

Each of the three coefficients o, [} and 62 all show a specific empirical dependence on the reflection

d-spacing.
o =09 +0y/d (16)
B =Bo + pr/d? (a7
02 = 0o2 +G12d2 + 62d4 (18)

The last expression is a sum of variances with contributions from the instrument and from strain
and particle size broadening by the sample.

INTERPRETATION OF TOF PROFILE COEFFICIENTS

The profile coefficients from a time of flight ('OF) neutron powder pattern Rietveld
refinement can give informatior. about the microtexture of the sample. This discussion will
describe how this information can be extracted from the cocfficients.

The strain in a lattice can be visualized as a distribution of unit cell dimensions about the
average lattice parameters induced by defects. Inthe reciprocal space (Figure 2) associated with a
sample with isotropic strain, there is a broadening of each point which is proportional to the

g constiam (1)



In real space (the regime of a TOF experiment) then

éf- = constant (20)

for strain broadening. Thus, examination of the function for the Gaussian component of the peak
shape from a TOF pattern (Equation 18) implies that the second term contains an isotropic
contribution fron: strain broadening. The other major contribution to 62 is from the instrument;
and because it is expressed as a variance, it can simply be subtracted. The remaining sample
dependent contribution is then converted to strain (S), a dimensionless value which is frequently
expressed as percent strain or fractional strain as a full width at half maximum.

S = 100%%«/21112(012-0“2_) 1)

where C is the diffractometer constant from Equation 3.

b,
74

Figure 2. The broadening of reciprocal lattice points due to strain.

For small particles the assumption that the lattice is infinite no longer holds so that the
reciprocal lattice points, h, are not §-functions but are smeared out uniformly depending on the
average particle size. ‘Thus, all the points are the same size independent of the distance from the

origin (Figure 3)



Figure 3. The broadening in r«.ciprocal space duc to particle size.

b*
a*

and
Ad* = constant (22)

The reciprocal of this quantity is the average particle size. In real space (for TOF) the broadening
is

ﬁg = constant (23)

From the functional form for the Gaussian broadening of a TOF peak (Equation 18), the particle
size affects the third term (022) in the expression. This term generally has no instrument

contribution and is used directly to calculate the particle size (p) by

2C

= —— (24)
P V2In 20,2

where C is the diffractometer constant and the units for p are A.



CW PROFILE FUNCTIONS
The most successful function for both x-ray and neutron CW data employs a multi-term

Simpson's rule integration described by Howard (1982) of the pseudo-Voigt, F(AT), described by
Thompson, et al. (1987).

H(AT) = 3 gF(AT) (25)

i=1
where the pseudo-Voigt is
F(AT) =mL(AT") + (1-n)G(AT"I) (26)

and the Lorentzian function is

xf__L
L =27 [(7/2)2 +‘t2] @)

The Gaussian expression is the same as used for the TOF function above (Equation 10). The
mixing factor, n, is given by

n = 1.36603(yT) - 0.47719(y1)2 + 0.11116(yT)3 (28)
and the FWHM parameter is
5
r=+v g3 +2.69269 [gty+2.42843 I’Q‘y2 +4.47163Ig2y3+0.07842 Tyt +y (29)

where the Gaussian FWHM is

Iy = 2V2In202 | (30)

The 20 difference modified for asymmetry, Ag, and sample shift, Sg, is

qo e s TS
AT = AT + e TeRs Secos® (3



where the sums have 3, 5 or 7 terms depending on the size of Ag. The corresponding Simpson's
rule coefficients, gj and fj, depend on the number of terms in the summation. The sample shift
can be interpreted as a physical shift of the sample, s, from the diffractometer axis by

_ -nRSs
5= 36000

(32)

where R is the diffractometer radius. This sample shift is usually only observed for measurements
done on conventional instruments with focussing geometry. The variance of the peak, 62, varies
with 20 as

o2=Utan 20 + Vtan © + W + (33)

cos2@

where U, V and W are the coefficients described by Cagliotti et al. (1958) and P i< the Scherrer
coefficient for Gaussian broadening. The Lorentzian coefficient, vy, varies as

Y= E:T))i_é*‘ Ytan O+ Z ' (34)

The first term is the Lorentzian Scherrer broadening and the second term describes strain
broadening.
INTERPRETATION OF CW FROFILE COEFFICIENTS

In the case of a CW experiment the strain broadening in real space is related to 20
broadeningfrom

éd£= A2Ocot® = constant (35)
or
A20 = A-Tdum('ﬂ (36)

In this expression A20 is in radians. Examination of the expression for the Gaussian broadening

(Equation 33) indicates that the first term contains a strain broadening component. As for the



TOF expression, this is a variance and the instrument contribution can be subtracted. This
variance must be converted to radians to yield strain, thus

S= 100%5(—)’5@ Vain2(U-u) (37)

Alternatively, the strain term is the one that varies with tan® in the Lorentzian component
of a CW peak shape (Equation 34). Again any instrumental or spectral contribution can be
subtracted to yield the strain component. This is in cdeg and is already a fuli width at half
maximum s9 the strain is

S= 100%1—8’(')—06(\( -Y)) (38)

For the case of a CW experiment the particle size broadening can be obtained from

‘:21 = A—'if'?-cot@ = constant (39)

From Bragg's law then

Ad _2A20

and the broadening is
AAd \
426 = 2dcos® 41

The first term in the expression for the Lorentzian broadening is of this form where

Ad

N -

The particle size can be obtained by rearrangement of this expression and converting from
centidegrees to radians by

900N A
T onX (43)

10
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The units are A.

The corresponding term in the Gaussian expression is the fourth one. Converting from
centidegrees to radians gives the expression

_ _4500M
P = 22 )

and again the units are A.

SYSTEMATIC EFFECTS ON THE INTENSITY

The intensity correction factors, Ky, consist of those factors which are dependent on the
sample, the instrument geometry, and the type of radiation used.

ErA ML
Kh:.n_n\%n_n_ 45)

where Ey, is an extinction correction, Ay, is an absorption correction, Oy, is the preferred orientation
correction, My, is the reflection multiplicity, L is the angle dependent Lorentz and polarization
correction , and Vy, is the unit cell volume for the phase. Some of them will be discussed in tumn.

EXTINCTION IN POWDERS

The extinction in powders is calculated according to a formalism developed by Sabine, Von
Dreele and Jorgensen (1985 & 1988) and is a primary extinction efiect within the crystal grains.
From the Darwin (1922) energy transfer equations Sabine (1988), by following tne formalisms of
Zachariasen (1945,1967) and Hamilton(19£ /), developed intensity expressions for both the
symmetric Laue and Bragg cases of diffraction by an infinite plane parallel plaie. The extinction
correction Ey for a small erystal is a combination of Bragg and Laue components

Ep = Epsin® + Ejcos?@ (40)



where
Ep= IN1+x (47)
and
x  x2 35x3
E|—1-2+4-48 wforx<1 (48)
or
2 1 3
E = ux[l “Bx 128%" ] forx>1 49)
where
x = Ex(\Fy/V)2, (50)

Fp is the calculated structure factor and V is the unit cell volume. The units for these expressions
are such that Ey is in um2 and is a direct measure of the block size in the powder sample. Sabine
et al. (1988) demonstrated this by examining the extinction effects for neutron powder diffraction
by hot pressed MgO samples characterized by electron microscopy; the refined extinction
coefficients correlated very well with the measured particle size distribution in these samples.

POWDER ABSORPTION FACTOR

The absorption, Ay, for a cylindrical sample is calculated for neutron powder data according
to an empirical formula (Hewat, 1979 and Rouse et al. 1970). It is assumed that the lincar

absorption of all components in the sumple vary with A and is indistinguishable from multiple
scattering effects within the sample.

Ay = e (T1ARA- T2 AR2A2) (51)

where

12
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Ty = 1.7133-0.368sin 2@ (52)
and
Ty = -0.0927-0.3750sin 20 (53)

For a fixed wavelength, this cxpression is indisiinguishable from thermal motion effects and
hence « a: not be refined independently of atomic thermal parameters.

X-ray diffraction data is usually taken with a flat plate sample where the macroscopic absorption is
a constant independent of scattering angle. There has been observed some microabsorption effects
particularly when multiphase mixtures are examined. If the components of the mixture have very
different absorption coefficients then the relative sca'e factors frequently do not reflect the

PREFERRED ORIENTATION OF POWDERS

The preferred orientation correction, Oy, is the formulation of Dollase (1986) who selected
a special case from the more general description by March (1932). For this model, the crystallites
are assumed to be effectively either rod or disk shaped. When the powder is packed into either a
flat plate or a cylinder, the crystallite axes will take up a preferred orientation that can be described
with a cylindrically symmetric ellipsoidal distribution function. 1n the usual diffraction
geometries for powder diffraction the unique axis of this distribution is either normal to the
diffraction plane or along the diffraction vector (h), and integration about this distribution at the
scattering angle for each reflection gives a very simple form for the correction,

n
On = Y (Ro%cos2Aj+sin 2Aj/Ro)-3IM) (54)
j=1

where Aj is the angle between the preferred orientation direction and the reflection vector h. The
sum is over the reflections equivalent to h. The one refinecable coefficient, Ry, is the axis ratio for

the ellipsoid and gives the effective sample compression or extension due to preferred orientation.
If there is no preferred orientation then the distribution is spherical and Ry=1.0 and thus Oy = 1.0
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OTIIER ANGLE DEPENDENT CORRECTIONS

The only other angle dependent correction for powder diffraction aata is the Lorentz and x-
ray polarization factors. For TOF neutron data there is an additional factor for the variation of
scattered interisity with wavelength thus

L =d%sin®
(35)
and for constant wavelength neutrons
Lee—b— (56)
~ 2sin28c0sO

For conventional X-ray sources there is a polarizatiun effect which depends on the choice
and orieniation of the monochromator (Azaroff, 1955). X-rays emitted from synchrotron sources
are very strongly polarized which dramatically modiiiss the scattered intensities of a powder
pattern. All these effects can be combined in a single expression

_Ppw(l -Pp)cos20 57
~  25in20cosO (57)

The coefficient Pp depends on the polarization of the incident beam,; for synchrotron radiation
Py=0.95 while for conventional sources with a crystal monochiomator usually Py=0.7. If no
monochromator is used then P,=0.5.
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